За 6 лет сотрудничества с разными компаниями я неоднократно сталкивался с задачей построения системы сквозной аналитики. Мы использовали разные подходы: обращались в агентство, нанимали фрилансера, строили аналитику своими силами...
Наиболее эффективным форматом оказалась формула: штатный аналитик + готовый сервис сквозной аналитики. Рассказываю подробнее, почему такая система оказалась наиболее работоспособной, как ее выстроить и поддерживать качество аналитики на высоком уровне.
Почему штатный аналитик, а не агентство или фрилансер?
Я убежден, что поддерживать работу системы аналитики — а это постоянный обмен данными, формирование отчетов, визуализация и т.д. — может только тот специалист, который разрабатывал и/или подключал систему с самого начала.
Почему я так считаю? Простой пример: когда мы запускали новый проект, в абсолютно новой клинике, то отчет строился ежедневно, и в разрезе пары месяцев вся динамика была видна и легкопонимаема. В дальнейшем подключались другие каналы привлечения пациентов, вводились дополнительные данные, такие как источники финансирования, бюджет и расход. Отчет становился все больше, и было необходимо постоянно добавлять новые фильтры, новые источники данных, делать интеграции и т.д.
Попытка ввести в эту задачу другого специалиста оказалась ошибкой: изменения были внесены, но не проверены на качество и корректность. Все цифры показывали недостоверные данные, в итоге делались некорректные выводы. Нам повезло, что это длилось всего неделю. Специалист, который изначально разрабатывал систему, вышел из отпуска, заметил и исправил ошибку. Мы отделались легко, нам повезло. А ведь все могло бы быть иначе: из-за ряда неправильных выводов мы могли перераспределить бюджет на некачественный канал, что привело бы к снижению показателей и сливу бюджета.
Поэтому так важно, чтобы в штате всегда был специалист, изначально разрабатывавший систему или как минимум обладающий детальными знаниями о том, как она внедрялась. Это ваш must have для поддержания корректной работы системы аналитики, ее масштабирования, визуализации отчетов.
И тут возникает первый и, пожалуй, самый сложный вопрос... Как найти такого специалиста?
Это самая главная и вместе с тем трудная задача для интернет-маркетолога — найти хорошего аналитика. Уточню: речь не просто о человеке, который умеет хорошо считать. Я говорю о специалисте, который вникает и понимает, как формируется цифра, а значит, должен быть очень гибким и коммуникабельным. Необходимо работать с большим объемом данных, и в основном с сырыми данными, поэтому надо знать «природу» цифры.
Помимо этого, необходимо разбираться в BI системах: чем отличается коробочная (локальная) система от онлайн-системы, какие риски присутствуют при использовании каждой из них и что нужно, чтобы начать работать здесь и сейчас. Уметь работать с такими расширениями, как xml, json, csv (с различными разделителями: «,», «;», знать, чем они отличаются и что лучше использовать) и т.д.
Допустим, вы определились с таким специалистом. С чего начать его работу в компании?
Ставим цели и определяем способы их достижения
Построение плана работы зависит от целей, которые вы ставите перед аналитикой в целом. Ответьте на такие вопросы:
- Зачем вам аналитика?
- Какие бизнес-задачи вы хотите решить с помощью данных?
- На какие вопросы ответить?
Ответы помогут сформулировать цели проекта.
Следующим шагом мы определяем способы достижения поставленных целей.
Если вы выступаете в роли менеджера проекта, стоит подготовиться к приходу аналитика:
- Собрать доступы к различным источникам данных, которые присутствуют в формировании отчета (переговорить со специалистами, которые выдают доступы; сформировать запрос на получение этих доступов).
- Узнать, как хранятся сырые данные и как к ним получить доступ: просмотреть View-таблицы 1C, SQL-базы данных по телефонии, узнать, как построен сайт: можно ли из него извлекать поступающие заявки.
- Изучить внешние системы — узнать, есть ли у них API, требуется ли создание шлюза (системы обмена данными).
- Подготовить бюджетный план. Это можно сделать на этапе подбора и одобрения специалиста. Можно сформировать этап «старта»: что нужно будет для успешного начала и на какой BI системе все будет строиться. К моменту выхода специалиста не только подготовить бюджетный план, но и закупить необходимые лицензии.
Если все вышеупомянутое повесить на специалиста в день его выхода на работу, ожидание получения первых отчетов может затянуться на месяцы.
Сервис сквозной аналитики. Что выбрать?
Пару слов о сервисе сквозной аналитики. Я в свое время пробовал выстраивать систему сквозной аналитики на основе Google Analytics (отправляя туда все данные, которые только мог). После обновления их системы я понял, что получил знания «как не нужно делать» и «как потратить время зря», создавая проект на неконтролируемой системе. То же самое меня ждало с Яндекс.Метрикой...
Другая плохая идея — собственная система. Почему сразу плохая? Если у вас не кружок энтузиастов, состоящий из 1–2 аналитиков и как минимум из 3–5 программистов, то это игра вдолгую, без возможности корректного применения на практике. Один специалист всегда упрется в потолок проверки написанной им системы и оценки качества полученных вычислений.
Третья плохая идея — открыть поисковую систему, вбить «топ-5 систем сквозной аналитики», открыть первые пару ссылок, бегло прочитать описание, найти интересующий тариф и начать внедрение сквозной аналитики.
Моя рекомендация: никогда не выбирайте то, что вам советуют, всегда пробуйте — устанавливайте и решайте ваши задачи и только после этого выбирайте тот или иной сервис.
Так как же быть, какой сервис выбрать? Все просто. На этот вопрос уже давно дан ответ: идете в магазин или интернет-магазин, покупаете PMBoK (Project Management Body Of Knowledge — свод знаний по управлению проектами) и получаете фактически практическое руководство на ближайшие N + 1 лет.
При этом важно:
- Понять, что система сквозной аналитики — это не задача, а проект.
- Определиться с сутью проекта: это разработка или внедрение? Если выбираете разработку, сами для себя распишите бюджеты, MVP и сроки.
- Ответить на вопрос: каковы риски проекта?
- Определиться с заинтересованными лицами и ресурсами проекта:
- Кто ключевые пользователи.
- Кто куратор проекта.
- Что представляет собой команда проекта.
- Какая будет использована инфраструктура т.е. оборудование, программное обеспечение, лицензии.
Если аналитик в данном контексте — ключевая фигура команды проекта, то сервис сквозной аналитики — «сердце» инфраструктуры.
Что выбрал я, выстраивая систему сквозной аналитики в «К+31»?
Бюджеты, финансирование, инвестиции — от мелких до крупный компаний, корпораций, это все невероятно сложно согласовать и выбить свое место в данной цепочке. Чтобы доказать, зачем вам эта система, необходимо иметь работающий прототип. Для этого мы использовали CoMagic.
Почему мы выбрали именно эту систему?
- Вы и так платите за систему аналитики, дополнительных больших финансовых вложений не потребуется.
- В CoMagic есть разнообразные отчеты: «Воронка продаж», DashBoard, «Сделки». Они подключаются за небольшую плату, не требуется заключать отдельные договора, просто позвоните своему менеджеру или включите их в личном кабинете и начните работать.
- Документация по API. Вы сможете без особого труда понять, как получать и передавать данные между системами, не будучи высокоуровневым программистом.
- Нативные интеграции с различными CRM и аналитическими системами: можно настроить работу в один клик.
Таким образом, использование CoMagic* на первом этапе построения системы сквозной аналитики для нас стало отличным решением. Мы смогли оценить трудозатраты, проверить наши возможности, а также увидеть подводные камни.
*Сразу уточню: упоминание CoMagic в данном контексте — не дань уважения этой компании и даже не нативная реклама.
Я лишь рассказываю свой практический путь выстраивания системы сквозной аналитики в «К+31». Именно с этого и начался целый проект и удивительная история: благодаря CoMagic мы получили возможность оперативно видеть не только звонки, но и информацию по сделкам, а также информацию на старте работы с рекламным агентством или рекламным каналом. При этом не требовалось строить громадные отчеты ни нам, ни подрядчикам, достаточно было зайти в CoMagic и получить ответ в реальном времени о ситуации: затраты, звонки, лиды, записи на прием, стоимость и другие данные.
Итак, мы определились с инфраструктурой проекта и наняли аналитика в штат. Следующий шаг — собственно построение эффективного взаимодействия между всеми членами команды. Что для этого нужно в первую очередь?
1. Работайте вместе!
Работать вместе можно по-разному. И здесь я точно не о такой работе:
Узнаете команду вашего проекта?! Разве может быть что-то хуже?!)
А вот может. Например, когда менеджер проекта считает, что он только ставит задачи, а сам не участвует в процессе построения аналитики.
Чтобы не допустить такой ситуации, на старте соберитесь всей командой и обсудите MVP проекта. Это займет 2, 3, 5 часов, день... не важно. Не успеете за один день, соберитесь на следующий и т.д. Важно, чтобы все были согласны с каждым шагом плана, учитывайте каждое возражение, оперируйте диалогами, фактами и никогда не употребляйте выражение «начальство сказало, значит, делаем так!».
Учитывайте нагрузку, старайтесь хоть немного вникать в процесс получения цифр и данных. Возможно, вы сможете оптимизировать изначальное решение или обнаружите узкое место и пойдете решать проблему с IT-службой.
После первых нескольких отчетов, как только аналитик покажет, что знает, как получать цифры, обсуждать и корректировать вычисления, вполне вероятно, что его закидают просьбами посчитать — от простых отчетов до сложных проектов. И вместо реализации интересного проекта его поглотит рутина. Не сможете вовремя вмешаться — придется решать куда более сложную задачу — искать нового специалиста. Поэтому второй важный совет:
2. Не дайте ему уйти!
Вне зависимости от того, сколько автоматизированных отчетов успел написать ваш аналитик, какие системы создал и какие инструкции подготовил для своего преемника, если он уходит — работа по созданию новых автоматизированных отчетов, да и в общем-то все развитие сквозной аналитики, замораживается до появлении нового специалиста. Поэтому лучшее, что вы можете сделать для компании, — не дать вашему аналитику уйти!
При правильном подходе сотрудник на должности аналитика может работать от 3 лет. Что для этого нужно?
1. Давать специалисту реальную возможность заниматься своими проектами, т.е. самовыражаться. Тут речь о желаниях сотрудника вовлекаться в рискованные и малоизученные области, которые могут и вовсе ничего не принести. Например, внедрение искусственного интеллекта. Это долгий процесс сам по себе, плюс не факт, что в дальнейшем эта технология будет иметь применение.
Мы с коллегами постоянно имеем возможность не только придумать проект, но и самостоятельно создать прототип, обкатать его на проекте, показать бизнесу и даже получить финансирование на реализацию.
2. Давать возможность раз в год за счет компании (полностью или частично) посещать курсы. Законный вопрос: «Зачем? Ему надо, пусть сам и учится». Во-первых, вы увидите, вовлечен в данную сферу специалист или уже начинает перегорать и скоро покинет проект. Во-вторых, специалистов, которые действительно хотят расти, мотивируют фирмы, которые дают не только возможности, но и способы. Они могут привносить новое дыхание, виденье.
Благодаря своей компании я не только посетил платные курсы, но и постоянно ездил на различные мероприятия (RIW, Mail, Яндекс, мероприятия, посвященные ИТ в здравоохранении, ИИ в медицине). После таких мероприятий у нас горели глаза, мы видели наших конкурентов, которые уже сделали, а мы еще не начинали, и все это нас очень мотивировало.
3. Обязательно следить за ростом такого специалиста и примерно через год, при условии, что его проекты продолжают расти, появляются новые задачи и сам специалист хочет попробовать реализовать в компании какие-то новые проекты, нанять для него помощника. Причем важно, чтобы он сам его себе подобрал. Вы получите: две головы лучше, чем одна, а также страховку на случай, если основной сотрудник решит покинуть компанию. У вас будет его приемник.
Перед тем как нанимать аналитика в компанию, возможно, вам стоит посотрудничать с агентством или даже с фрилансером. Это нужно, чтобы у вас появилось понимание, зачем вам такой специалист внутри компании.
Если вы можете четко ответить на этот вопрос — ищите классного аналитика и приступайте к выстраиванию системы. Для этого:
- Определите и опишите будущий проект.
- Поставьте цели и напишите пошаговый план того, как они будут достигаться.
- Работайте в команде.
- Давайте возможность самовыражаться, обучаться.
- При росте проектов, задач нанимайте помощника для вашего аналитика.
И не забывайте:
Ваша роль в том, что делает аналитик, больше, чем сама роль аналитика. Вы должны сами четко понимать, как выполняется задача, с привлечением программистов, IT-служб, других подразделений. Обязательно до начала проекта нужно составить и защитить бюджет и никогда не экономить на используемом решении.
Мы уже отправили вам первое письмо с подборкой лучших материалов